Roll No. \qquad

D-3830

B. C. A. (Part I, II, III) EXAMINATION, 2020

(New + Old Course)
(Only for Non-Mathematical Students)
BRIDGE COURSE

Time : Three Hours]
[Maximum Marks : 50
[Minimum Pass Marks : 20
Note : All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Show that the sequence $9,12,15,18, \ldots \ldots$. is an A. P. Find its 16 th term and the general term.
(b) The third term of a G. P. is 4. Find the product of its first five terms.
(c) If $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$, then show that $\mathrm{A}^{-1}=\mathrm{A}^{2}$.
2. (a) How many words can be formed from the letters of the word, "TRIANGLE"? How many of these will begin with T and end with E ?
(b) If ${ }^{n} \mathrm{P}_{r}={ }^{n} \mathrm{P}_{r+1}$ and ${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{r-1}$, then find the values of n and r.
(c) Expand $\left(1+x+x^{2}\right)^{3}$ by binomial theorem.
Unit-III
3. (a) If $\cos \theta=-\frac{1}{2}$ and $\pi<\theta<\frac{3 \pi}{2}$, then find the value of $4 \tan ^{2} \theta-3 \operatorname{cosec}^{2} \theta$.
(b) If $\mathrm{A}+\mathrm{B}=\frac{\pi}{4}$, then prove that:

$$
(1+\tan A)(1+\tan B)=2
$$

(c) Show that:

$$
\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \theta}}}=2 \cos \theta
$$

Unit-IV

4. (a) Find the locus of a point, so that the join of $(-5,1)$ and $(3,2)$ subtends a right angle at the moving point.
(b) If a parabolic reflector is 20 cm in diameter and 5 cm deep, then find its focus.
(c) Find the equation of the ellipse whose axes are along the co-ordinate axes, vertices are $(\pm 5,0)$ and foci at $(\pm 4,0)$.

Unit-V

5. (a) Find the mean deviation about the median for the following frequency distribution :

x_{i}	f_{i}
3	3
6	4
9	5
12	2
13	4
15	5
21	4
22	3

(b) Calculate the mean and standard deviation of first n natural numbers.
(c) Calculate the mean and standard deviation of the following distribution :

Marks	No. of Students
$20-30$	3
$30-40$	6
$40-50$	13
$50-60$	15
$60-70$	14
$70-80$	5
$80-90$	4

